Categorical Dynamics and Symplectic Geometry

1 Lecture 1: Homological algebra

K a field.

1.1 A categories

DEFINITION 1 (A, CATEGORY) An A, category A consists of:
1. Objects Ob(A)
2. Graded K-vector-spaces homy (X, Y) for X, Y € Ob(A).
3. As-morphisms

-l homy (X, Y) — homu (X, Y)[1],
- 1 thomu (Y, Z) @ homg (X, Y) — homg (X, Z)[0],

. LL‘E{ : homA(qu,Xk) & ... ®h0mA(Xo,X1) — hOTTlA(XQ,Xk)[Z—k].

4. A relations

EXAMPLE 1) A, algebras are precisely the A, categories with one element.
EXAMPLE 2) dg-categories become A, categories by setting u* = 0 for k > 3.

We can define H*(A), which has the same objects as A and morphisms H* (hom4 (X, Y)),
and H°(A), which has the same objects as A and the 0-degree morphisms of H*(A). u? gives an
associative product on H*(A).

DEFINITION 2 (A, FUNCTOR) An A, functor consists of the action on objects ¥ : A — B and
maps
F4: homy (Xa—1,Xa) ® ... ® homuy (Xo, X1) — homy (F(Xo), F(Xa))[1 — d]

satisfying “an appropriate homomorphism equation.” Eg
W (@) £F (W () =0

and
p2F), T £ u (T2 ) EF P ) £ FH ' (), ) £ F2 (k' (1) =0.

Suppose F : A — B induces an isomorphism between H*(A) and H*(B). Then 35 : B —
A such that o G induces Idy(5) and G o F induces Idy(4). Thus, we have a good definition for
quasi-isomorphic categories (unlike the dg case).

DEFINITION 3 Two objects are quasi-isomorphic if they are isomorphic in H°(A).

DEFINITION 4 Let X,Y € Ob(A). X is a deformation retract of Y if 31 € homy(X,Y) and 7 €
homy (Y, X) such that to 1 = Idx.
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1. Any A-category is quasi-isomorphic to a dg-category.
2. Ais minimal if p!; = 0. Any A, category is quasi-isomorphic to a minimal one.
3. Ais proper if H*(hom4 (X, Y)) is finite total dimensional for all X, Y.
4. There are also notions of cyclicity and unitality, which we may talk about later.
We assume that A is cohomologically unital, that is, that H*(hom(X, Y)) has a unit which is well-

behaved with respect to [u?].

1.2 Twisted complexes

A C A™. Construct A™ from A by defining shifts X — X[k], k € Z and cones: for Xo,X; € Ob(A)
and a € homy (X, X7) such that g (a),

Cone(a) = {XO[H @ Xy, { 2 8 ]}

D' := HO(A"™) is triangulated.

1.3 A, modules

Amed .= Fun(A°PP Ch), where Ch is the dg-category of chain complexes over K. Concretely, a
right-A-module M is defined by

1. A graded K-vector-space M(X) for each X € Ob(A),
2. operations

i s M(X) — M(X) 1],
A s M(Y) ® hom(X,Y) — M(X),
urZ : M(Z) ® hom(Y, Z) ® hom(X,Y) — M(X)[-1],

H}\/:lkM(Xk) ® hom(Xyx_1,Xx) ® ... ® hom(Xg, X7) — M(Xo)[1 — k],

3. and relations

1 (TTL, (1) + H]ﬂ (H1:O(m)a (l) + Pﬂﬂ (m> H1 ((1)) = 0)

Note that the relations allow us to define H*(M(X)).

DEFINITION 5 (MORPHISM OF A, MODULES) Morphisms of A, = natural transformations.
fn: M(Xy) @ hom(Xn—1,X5) ® ... ® hom(Xo, X7) = N(Xo)[1 —n]

such that

Y (%@ u' @1d®) £ fi (W @1d®) = Y p'i(f o 1d®).

#inputs #inputs



q.i
Fact: If H*(M(X)) =0V X € Ob(A), then M = 0.

DEFINITION 6 D™°4 = HO(A™°d), This is a triangulated and Karoubi complete category. ie.

given M € A™°4 and [r] € H®(hom 4moa (M, M)) idempotent, 3 M™ € Ob(A™°4) which is the
homotopy retract of M associated to .

DEFINITION 7 (YONEDA EMBEDING) The Yoneda embedding is a map A — A™°4 sending Y €
Ob(A) to hom4(—,Y).

EXAMPLE 3) If A is an A algebra then AY°™ is the free module A.

DEFINITION 8 M is perfect if it is a homotopy retract of the Yoneda image of A*. The category

of perfect A modules is AP¢". We define DPe™f = HO(APef). This latter category is triangulated
and Karoubi complete.

DEFINITION 9 M is proper if H*(M(X)) has finite total dimension for each X.

LEMMA 1 If A is a proper Ao category then all M. € APe™ are proper.

LEMMA 2 If M,N € A™°4 such that M is perfect and N proper, then H*(hom g moa (M, N)) is finite
dimensional.

Suppose A is an A algebra and M € AP¢™ is built from finitely many copies of A. Let |[M]| be
the minimal number of such copies. Then

dim H*(hom gmoa (M, N)) < dim H*(N) - [[M][.

1.4 A, bimodules
(A,:B)mod = (Aop‘p ® B)mod.
DEFINITION 10 An (A, B)™°4 bimodule Q is
1. a collection of graded vector spaces {Q((X,Y))} over all (X,Y) € Ob(B) x Ob(A),

2. operations pgﬂ:s shomy (Yn—1,Yn) ® ... ® homu (Yo, Y1) ® Q(Xs, Yo) ® homs (Xs—1,Xs) ®
... ® homg (X0, X7) = Q(Xo, Yn)[1 —n—s],and

3. relations
Z [iual:*(..., u’(‘ﬁ]:*(..., o)y o) ] F Z [iu’éﬂ F ooy 1 () ey oy )]
) [FUG ey ey 1 (), )] =0
EXAMPLE 4) Diagonal (A, A) module, Q(X,Y) = homy(X,Y), and pq is inherited.
EXAMPLE 5) F € Fun(A, B) yields the graph bimodule Q = Graph(J), where Q(X,Y) = homs (X, F(Y)).

(A, B)™°d js a d.g. category equal to Fun((A°PP @ B)°PP, Ch).



2 Lecture 2: Homological Algebra & Hochschild homology

DEFINITION 11 (CONVOLUTION) Let P € (A, B)™°4. P gives rise to the convolution functor

(DiP :Amod - Bmod
M — ((M ®A P/I

where
MePX)=| @ MM)exPXYo)|e| @  MY1) @k hom(Yo, Y1) @k P(X, Yo)[l]
Yo€Ob(A) Yo,YEODB(A)
Remarks
1.
q)_/[ = IdAﬂ’LOd

(A the diagonal bimodule.)

2. There is a diagram, commutative up to quasi-isomorphism of functors

F

A B
Yon‘ lYon
Amod thod
DGraph(a)

3. If P = (XOPP)Yon © YYon then dp(M) = M(X) @ YYOr,

4. Consequence: If A is proper and P is perfect, then ®» maps proper modules to perfect ones.
DEFINITION 12 A is smooth if (A, A)™°4 is perfect.
LEMMA 3 A = K[X], X an algebraic variety = the two notions of smoothness coincide.

LEMMA 4 A smooth and proper = APTOP = APeTT,

PROOF: Apply ¢4 to proper M and use Remarks 1 and 4. >

2.1 Quotient categories

B C A a full subcategory. Want to define ¢ = A/B. C is equipped with a map Q : A — € such
that the composition B — A — C is essentially 0; and such that, if D is an A, category, then

Fun(€, D) — Fun(A, D) is cohomologically full and faithful, with image precisely those functors
which kill B.

THEOREM 1 These exist.



3 Hochschild Homology

3.1 Motivation

X closed, symplectic.

QH"

T

HH. (Fuk(X)) HH, (A)

Suppose A — Fuk(X). If Id lies in the image then “we can study A instead of Fuk(X).”

3.2 Construction
3.2.1

Suppose A is an algebra over a field K. For an (A, A)-bimodule M (which is a right A® = A ®x
A°PP-module), we define
HH, (A, M) :=Tor? (M, A).

To compute, take the standard bar resolution:

S A A®3 A®2 0
0 0 A 0

where, for example, x: a@b®c®d— ab®c®@d—a®bc®d+a®b® cd. Tensor with M to get

M®qe A®4 M®@qe A®3 M®@4e A®2 0
06(1% = :[
M @k A®? M @k A M 0

wherex : mM®a®b®c®d— dmab ® c — dma ® bc + cdma ® b. Thus, we may define
HC, (A, M) := M ®k A®™ with differential

I(MRa®...00,) = MA1RArX...00n+ [ Z ITMR® A ®...0 410+ ® A2 Q... ® an] +a, mMRXa|®...0an_1

1<i<n

and set
HH,, (A,M) = H,,(HC,(A, M), 0).
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Figure 1: An illustration of the differential

3.2.2
Suppose A is now an A, algebra over K. Let M be an (A, A)-bimodule. We again have
HH, (A, M) == Tor" (M, A).

The differential is modified according to Figure 2.

> 2 E >+
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Figure 2: A, algebra differential

3.2.3

Now let A be an A,-category and Q an (A, .A) bimodule. The Hochschild chain complex is
HC(A, Q) :== @D Q(Xa, Xo) ®k homa(Xa—1,Xa) @ ... ® hom.a(Xo, X1)[d].

Less concretely,

M HH. (A, Q) = H"(Q ®ac A)

3.3 Key Properties
1. Covariant functoriality in Q (obvious from Eq.1).

2. Given an A -functor J: A — B and a (B, B)-bimodule Q, we get a map HH. (A, F*(Q)) —
HH..(B, Q), where F* is the pullback on both sides.



3.4

(a) Notation: HH, (A) := HH. (A, A) (the latter A refers to the diagonal bimodule).
(b) 1and 2 imply HH, (A) is covariantly functorial.

Morita invariance: The Yoneda embedding A — APerf induces an isomorphism HH,,(A) =
HH, (APeTf),

PROOF: A — AP induces a restriction map AP¢""-bimodules— A-bimodules, which

is a quasi-equivalence sending the diagonal to the diagonal >
Kiinneth formula: HH, (A ®x B) = HH,(A) ® HH,(B).

To see this, use Eq. 1 and pass to d.g. categories.
Opposite property: HH, (AP°P) = HH, (A).

This follows from the ‘concrete’ definition.

K =0

Normalization: HH, (K) = { 0 else
Moreover, V P € Ob(KP¢™"), there is a map K — KP¢". This induces a map

Morita

K = HH,(K) — HH,(KP¢™") =  HHy(K) = K.
This map is multiplication by x.

Exactness: Let B — A be a full A, subcategory and A/B the quotient. Then there exists a
long exact sequence

... > HH,(B) - HH,(A) - HH,(A/B) - HH.,1(B) — ...

(unproperty) HH, does not satisfy homotopy invariance, which is when the inclusion K —
K[t] induces an isomorphism in HH,. It is doubtful that there exists a homology theory with
all of the above properties.

Consequences of the key properties

Let K — APe™ be the functor associated to P € Ob(AP¢"f). Then the image of 1 under

Morita

K == HHo(K) — HHo(APe™") =  HHo(A)

is denoted [PlxH.

By functoriality, this is invariant of the quasi-isomorphism class of P. By normalization,
PO = (=1) [Pl

Let M € Ob(AP™P). M is (by definition) a functor A°PP — KPP = KPe"f We can then
consider

HHo (A) =22 HHo (A°PP) — HHo(KP™P) = HHo(KP™) = HHo (K) = K.

This associates to M the class [M]}{;; € HHo(A) Y.



3. Recall that if P is a perfect module and M is a proper module, then H*(hom 4moa (P, M)) is
finite dimensional (i.e.. hom gmoa (P, M) € Ob(KPTP)).

Let Fp : K — AP be the obvious functor, and similarly for Fy : A°PP — Krerf. Also
define

Gt APETT y (KPTOP)OPP
Q — homygmoea (Q,M)).
Then Spm o Fp : K — (KPT©P)°PP induces a map
HHo (K) — HHo((KP™P)°PP) — HHo (K),

and this map is precisely multiplication by x(hom 4moa (P, M)). We obtain the “Cardy rela-
tion”

) (MY, [PIr) = X (H* (hom g moa (P, M) .

x(hom ymod (p,m)y)

(Tp)«

HHO (Ap erf)

NT (Gm )

HHo (A) HHo ((KPeTf)opP)

\\

HHo (A°PP) ——— HHo(KPe™)

MY n

4 Lecture 3: Hochschild homology contd. and Hochschild coho-
mology
4. There is a natural A .-functor

APTOP (Aperf)op‘p —_y KPToP
(M, P) — homgmoa (P,M)

inducing

HH. (AP™P) @ HH, (AP¢™f) = HH, (AP™°P ® (AP T)°PP) — HH, (KP™°P) = K
M] ® [P] = x(H"(hom gmoa (P, M))).



10.

11.

Recall: If Q is a perfect (A, B)-bimodule, then the convolution functor

q)Q :Amod N .Bmod
M= M®4Q

brings proper modules to perfect modules.

Q as above, 50 [Q]xH € HH, (AP°P @ B) = HH, (A) ® HH, (A) ® HH.(B). The induced map
(Dq). - HHL(A™4) — HH, (B™o%)

is given by contraction with [Q]HH.

Recall: A is a smooth A, category if the diagonal bimodule is perfect.

If A is smooth, then the map (®4). : HH.(AP™°P) — HH., (AP¢"") = HH, (A) has finite rank
(since ® 4 = Id4). So we can think of (® 4 ). as induced by the inclusion APT°P — APerf,

Recall: If A is proper then APeTf C APTOP,
A proper = we can restrict eq. (2) to get a pairing

(- Jrn s HH (A) @ HHL (A) — K.

So if A is smooth and proper, then HH, (A) has finite total dimension. Moreover, the above
pairing is non-degenerate.

If a homology theory H satisfies exactness, then it also satisfies weak exactness: If A is a
directed A, category with objects X1, ..., Xy, then

- K™ x=0
H.(A) = { 0 else

The Grothendieck group is
Ko(A) = ([Clk; C € Ob(A))/{[Cone(Cy — C2)lk = [Calk — [Cilk}
If H, satisfies weak exactness then [Ply defines a group homomorphism
Ko (APETT) — Ho(A),
[M]g defines a group homomorphism
Ko (APTP) — Ho(A)Y,
and H., (@) depends only on [Q]k € Ko((A, B)PeT).
HH.,. does not satisfy homotopy invariance; instead, it satisfies

K[s] *=0,-1

HH. (K[s]) = { 0 else

This allows for a “Lefschetz trace” type formula.



EXAMPLE 6) Let C be a chain complex and ¢ an endomorphism, which induces the A.-

functor

K[s] — KPe'*

S+ C.
The induced map is
K[s] = HHo(K[s]) — HHo(KPe™ ) = K

sk vﬂ Str(ck).

(*) can be written Y, u*Str(c*), where u* is dual to s*. Likewise, given P € AP with

endomorphism p, [plun € HHo(A)[[ul]l. Then for M € Ob(APTP),

(M, [plhr) = ) uRStr(-[pl* : H*(homgmoa (P, M) — H*(hom g moa (P, M)))).
k

5 Hochschild Cohomology

5.1 Motivation

1. HH* has the structure of both a graded Lie algebra and a graded commutative algebra, thus

it has a Gerstenhaber algebra structure.

2. HH* encodes information about deformations of A, structures.

5.2 Definitions

Assuption: Char K = 0. [Not strictly necessary, but some results here no longer hold without it.]

DEFINITION 13 Let A be a graded vector space. Define
TANMN) =KeAllle (A A)2] & ..

T(A[1]) is a coalgebra with coproduct

d
g ®..x0a — Z((ld ®.®a4+1)® (0 ®...0ar).
i=0

DEFINITION 14 A coderivation is a map I satisfying the coLeibnitz rule
Aol'=T®id+id®T)oA.
DEFINITION 15

CC*(A, A) :=Hom(T(A]),A) = H Hom(A®4, A)[—d].
a>o0

LEMMA 5 Hom(T(A[1]),A) = Coder(T(A[1]))[-1].

PROOF: (+—) Compose coderivation with the projection onto .A.

(—) v+ Coderl, where I'(ag ® ... ® a1) = Zi‘j A ®..0Y(Ai4H ®..0a141)®aA; @ ...

®ar. »



5.3 Graded Lie Algebra Structure

i, vallaa ® ... ® a1)“ =" y10v2 £y20v1.

Giveny € CC(A,A), we want to define exp(y) : T(A[1]) — T(A[1]).
Compose with projection to get F : T(A[1]) — A[1].

Has components 3 € A, 51 : A — A, F? : A® A — A[-T1].

“Define” exp(y) =1d +T + %Fz + %lﬁ + ...

1 1 1
T =y 4 37 () + 220 + Y () +

. 1 1 1
Fl=ida+v" + 27" (V) + 372 (0 + 370 ) +

5.4 Problem of infinite sums

Solution 1: CC*(A, A) has a decreasing filtration

FPCC* (A, A) = [ [ Hom(A[11®9, A).
da>p

Easy to check that the Lie bracket interacts as
[FPCC*,FICC*] = FPHa-1cCr.

Assume y € F2CC* (i.e. Y° = y' = 0). Then exp(y) is well-defined. This is true more generally if
v! is nilpotent.

Solution 2: Introduce formal variable T to make exp converge in K[T].

5.5 Deformations of A, structures

Now assume A carries an A, structures 4. A non-unital Ao, structure p can be throughout of
as an element in CC? such that u® = 0 and 4 [u, u] = 0.

5.5.1 First order deformations

Introduce a formal variable €. Suppose we have a first order deformation e := p + €y, where
v € FTCC2(A, A) and €2 = 0. Then

1

E[Hm tel = elw, vl

DEFINITION 16 The differential on CC*(A) is 3 = [y, -]. Its cohomology is HH*.

First order deformations <= degree 2 Hochschild cocycles.

Remark: [,] on CC* induces a graded Lie algebra structure on HH*.



5.5.2 Second order deformations

lte = 1+ ey + €28, where €3 = 0 and vy is a cocycle.
[He) He] = €2(66 + h/)y])

A first order deformation can be extended to a second order deformation iff [[y], [y]] vanishes.

THEOREM 2 Suppose A is a graded algebra such that HH*(A, A2 — p]) = O for all p > 3. Then any
Aco-algebra A such that H*(A) = A is quasi-isomorphic to A as an A, algebra.

PROOF: Consider A, deformations of A. H(A) = A = no first order deformations. Assump-
tions mean they also agree in higher order. >

Remark: A a graded algebra = can define HH* (A, Alq]).

5.6 Product structure

HH*(A, A) has a graded product structure induced by

Y2 kY1 = Z TRl Y2 (o) ey Y1 (n)y en)

LEMMA 6 The induced product on cohomology is graded commutative.

THEOREM 3 Any first order deformation of the diagonal bimodule A can be extended to arbitrarily high
order (here we need charK = 0).

PROOF: Let [y] € HH'(A, A) and F = exp(ty) where t is a formal variable. Take graph biomdule
of F. = deformation over K[[t]]. >



