Objectives
(4) Define a field
(2) Give examples of vector spaces over fields.

Previously:
$\mathbb{R}, \mathbb{R}^{2}, \mathbb{R}^{n}$, \{polynomials oven $\left.\mathbb{R}\right\},+$, operations (\&) and (.) looked pretty similar.
ex. $(f+g)(x)=f(x) \underset{\sim}{t} g(x)$
addition in \mathbb{R}

Today Vector spaces with more general operations.

Q is $\mathbb{R}_{+}:=\{x \in \mathbb{R} \mid x \geq 0\}$ a vector defined to be $\underbrace{}_{\text {such that }}$ space? the set of
No.
ex. $-x \underset{\text { not in }}{\ddagger} \mathbb{R}+\cdots$ no additive inverse.
Check "well-definedness" first (my personal mule of thumb) is $c \cdot x \in \mathbb{R}_{+} \quad \forall c \in \mathbb{R}$ and $x \in \mathbb{R}_{+}$? no if $c<0$ then $c \cdot x<0$.

Q Are there different definitions of ' + ' and '.' that could make \mathbb{R}_{+}into a vector space?

$$
\mathbb{R}_{+} \xrightarrow{\log } \underset{T}{\mathbb{R}}
$$

So define: $x+y$ by

$$
\log ^{-1}[\log (x)+\log (y)]
$$

Define

$$
\left.\begin{array}{rl}
x+y & =x \cdot y \\
c \cdot x & =x^{c}
\end{array}\right\}
$$

Let's check some vector space properties:

1. $x+y:=x y=y x=: y+x$
2. Additive identity? $1+x:=1 x=x$
3. Additive inverse? $\frac{1}{x}+x:=\frac{1}{x} x=4$
4. $1 \cdot x=x$? $\quad 1 \cdot x:=x^{2}=x$.

Q Why does ' c ' have to be in \mathbb{R} ?
Af No reason. We can replace \mathbb{R} by any field.

Defn. A freld \mathcal{F} is a set with operations t, satisfying

$$
\begin{aligned}
& \forall x, y \in \mathcal{F}, \quad \begin{array}{c}
x+y \in \mathcal{F} \\
x \cdot y \in \mathcal{F}
\end{array} \quad \text { and } \\
& x \cdot y \in \mathcal{F}
\end{aligned}
$$

(i) $\left.\begin{array}{rl}\forall a, b, c e \tilde{F}, \quad a+(b+c) & =(a+b)+c \\ a \cdot(b \cdot c) & =(a \cdot b) \cdot c\end{array}\right\}$ associativity
(2) $\forall a, b \in F, a+b=b+a$ and $a \cdot b=6 \cdot a\}$ commentativity
(3) $\exists \quad 0,1 \in \mathcal{F}$ s.t. $\forall a \in \mathcal{F}, \quad O+a=a$ and $l \cdot a=a$
such that
(4) $\forall a \in \mathcal{F}$ J $-a \in \mathcal{F}$ s.t. $a+(-a)=0$
(5) $\forall a \in f^{a \neq 0} \nexists a^{-1} \in f$ s.t. $a \cdot a^{-1}=1$
6) $\forall a, b, c \in \mathcal{F}$
$a \cdot(b+c)=a \cdot b+a \cdot c$ distributivity
Examples of fields
$\mathbb{R}, \mathbb{C}, \mathbb{Q}$
L for some people, this is always assumed. Let me know if you want me to make sides.

Examples of non-fields
$\mathbb{Z}_{2}, \quad \mathbb{N}^{\Delta}$ no additive inverses
no multiplicative inverses.
(2) Adjoining elements
ex. $\mathbb{Q}(\sqrt{2}):=\{a+b \sqrt{2} \mid a, b \in \mathbb{C}\}$
 from \mathbb{R}.

$$
\begin{aligned}
& (a+b \sqrt{2}) \cdot(c+d \sqrt{2})= \\
& a \cdot c+a \cdot d \sqrt{2}+c \cdot b \sqrt{2}+d \cdot b \cdot 2 .
\end{aligned}
$$

the multiplicative inverse of $\sqrt{2}$ is

$$
\frac{1}{2} \cdot \sqrt{2} .
$$

ex. $\mathbb{R}(i)=\mathbb{C}$.
(3) Finite fields
i)

$$
\mathbb{Z}_{2}:=\{0,1\}
$$

$$
0+0=0
$$

$$
0 \cdot 0=0
$$

$$
\begin{aligned}
& 0+1=1 \\
& \text { additive },>1+1=0
\end{aligned}
$$

$$
0.1=0
$$

identity

$$
1+1=0
$$

"modular arithmetic"

1

$$
1 \cdot 1=1
$$

ii) $\mathbb{Z}_{3}:=\{0,1,2\}_{2}+, \cdot$

$$
t+1=2
$$

$$
0 \cdot 1=0
$$

$$
2 \cdot 1=2
$$

$$
2 \cdot 2=1
$$

ii) $\mathbb{Z} / 5 \mathbb{Z}:=\{0,1,2,3,4\},+$.

$$
3 \cdot 2=3+3+3+3=2
$$

Altematively, write $3.4 \equiv 12 \mathrm{mod} 5$
is congruent to
Note $12=(2.5)+2$
iv) $\mathbb{Z} / p \mathbb{Z}$, for any prime p.

Note. $\mathbb{Z} / 4 \mathbb{Z}$ is not a field.... '2' has no multiplicative inverse.

$$
\begin{aligned}
& 2 \cdot 0=0 \quad 2 \cdot 3=2 \\
& 2 \cdot 1=2 \\
& 2 \cdot 2=0
\end{aligned}
$$

A vector space V_{v} is a set with operations *, so that
$\forall \quad v_{1}, v_{2} \in V$ and $\forall \quad c \in \mathcal{F}$
$v_{1}+v_{2} \in V$ and
$c \cdot v_{1} \in V$ and
the 8 properties that we saw for V.S. over \mathbb{R} hold, with c now living in F.

Examples
$\mathbb{Q}^{n}, \mathbb{C}^{n}, \mathbb{Z}^{n}$
very cool.
egg. Binary codes: $\left\{\begin{array}{lllll}0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0\end{array}\right\}^{\text {elements }}$
egg. the
game of Set.

A set consists of three cards satisfying all of these conditions:
They all have the same number or have three different numbers. $-1,2,3$ They all have the same shape or have three different shapes. They all have the same shading or have three different shadings. They all have the same color or have three different colors.

e.g. the game of Set.

A set consists of three cards satisfying all of these conditions:
They all have the same number or have three different numbers. $1,2,3$ They all have the same shape or have three different shapes.
They all have the same shading or have three different shadings. They all have the same color or have three different colors.

egg. the game of Set.
A set consists of three cards satisfying all of these conditions:
They all have the same number or have three different numbers. $1,2,3$ They all have the same shape or have three different shapes.
They all have the same shading or have three different shadings. They all have the same shading or have three different shadings. \square亿
Described by 4 characteristics. m>4-dim. vector space (?)
Each characteristic can take 3 different $\xrightarrow[m]{\text { values }}(\mathbb{Z} / 3 \mathbb{Z})^{-2}$

egg. the game of Set.
 get a Set?
If they all have the same number.

Terry Tao: "Perhaps my favorite open question is the problem on the maximal size of a cap set."

$$
[10]+\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

a set is 3 cards that sum to \vec{O} when I view them as points in $\left(\mathbb{Z}_{3}\right)^{4}$.
https://www.wired.com/2016/06/simple-proof-card-game-set-stunsmathematicians/

